:简单的测试,让数院的周海教授看到了徐川的数学功底,也有些羡慕物院的陈正平。
能在刚进入大学阶段就拥有堪比研究生功底的学生,他怎么就没有遇到过呢?
虽然没有人规定一名学生不能有两名老师,且尽管是完全不同的两科目,他也不好厚着脸皮去和陈正平抢人。
“周老师,我有个问题想请教一下。”周海准备离开,但被徐川喊住了。
“哦?是什么问题,说来听听。”周海有些好奇的问道。
徐川从椅子上取下挂着的书包,从里面掏出了一个灰色的笔记本,翻开找到这两天的笔迹。
确认没有找错后递给了周海。
“周老师,这是我这两天在读《线性算子的因式分解与巴拿赫空间的几何性质》时列出来的一些问题,我推衍到一半解不开了,您帮忙看看?”
“行,我看看。”
周海伸手接过了笔记本,饶有兴致的看去。
刚才的简单询问虽然让他看到了徐川的数学功底,但却没有看到他的极限。
而能难住他的题目,必定能代表学识抵达了何方。
就让他看看这名学生的深浅好了。
“这字,真漂亮。”
笔记本入手,上面的整洁字迹就让周海心中赞扬了一声。
说实话,搞数学的,真就没几个字写的好看的。
当然,搞数学的也不需要自己的字有多好看,研究阶段只要自己写出来的东西能看懂就行。
这就跟搞编程的一样,自己写出来的代码,只要能运行,自己能看懂是啥意思啥功能就行了。
至于有没有注释什么的,那重要吗?
不重要。
至于真要证实或者研究出来了,大不了再费点功夫将论文敲到电脑里面去嘛。
所以基本上数学老师和数学家的字迹都是龙飞凤舞的。
“weylsw:pce算子的特征值分布与计算。”
“定理一:假设Ω?r?是有界开区域(不对边界的正则性做要求),那么存在单调上升的无界序列{λk}满足:0
“定理二:若Ω是立方体区域,也即形如[a?,b?][a?,b?]”
“定理三:”
“若n(λk)是有界开区域Ω上的特征值计数函数,那么,是否能在r3中构造了一对等谱非等距同构分形鼓,并在此基础上,证明其波数目函数有精确的第二项。”
笔记本上的字迹入目,周海的目光就全聚集到了这上面。
“等谱非等距同构和分形鼓数学方面的问题吗?”
“在r3的基础上构建一個等谱非等距同构分形鼓来证明波数目函数的第二项,有意思。”
“能利用区域单调性和极小性原理给出特征值的一个刻画吗?”
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
炮灰女配佛系养娃日常[穿书] 含泪攻略前男友[快穿] 狂野山村,从草垛开始 关于我成为鬼杀队剑士的这档事 汉家功业 团宠九宝的锦鲤人生 神奇小司机 我!清理员! 悬壶济世,我只是想长生不老 快穿攻略,病娇男主,宠翻天! 反派戏精[重生] 诸天:一切从拜师九叔开始! 离婚后,禁欲前夫失控了 嫁给权臣之后 千金为后 葫中仙 勿扰飞升 重生后,阴鸷王爷逼我哄他 (快穿)渣男宠妻日常 拯救炮灰女配
云禩穿越了,穿成了九龙夺嫡中注定惨败,最终被圈禁而死的八爷胤禩。天无绝人之路,一睁眼竟然绑定了与世无争悠闲种田空间a,管你九龙夺嫡危机四伏,云禩只想有事种种田,无事喝小酒,78元一斤的白草莓吃到饱...
1V1每本书里都有个坏事做尽的渣女,自私自利,人品低劣,为了自己的美好生活将别人害的凄惨万分。当有一天,大佬成为了她们本文又名大佬的宠夫日常,看我西禾大人是如何宠爱自家夫君的,嘻嘻暂定世界(1)男友搬砖供我读书(2)保姆之女(3)表小姐她心机叵测(4)真海王了解一下?(5)抢了团宠妹妹的未婚夫后(6)变形记里遭人厌的小村姑(7)我爱豆我自己宠(8)杀夫证道(9)请来一只狐仙以上排名不分先后,后面不时脑洞,喜欢的记得收藏哦~嘿嘿嘿嘿各位书友要是觉得快穿之大佬拿了渣女剧本还不错的话请不要忘记向您QQ群和微博里的朋友推荐哦!快穿之大佬拿了渣女剧本...
电视剧黄金瞳由张艺兴领衔主演,于2019年2月26日震撼开播! 典当行工作的小职员庄睿,在一次意外中眼睛发生异变。 美轮美奂的陶瓷,古拙大方的青铜器,惊心动魄的赌石接踵而来,他的生活也随之产生了天翻地覆的变化。 眼生双瞳,财富人生 5w0712展开全部gtgt...